Explaining Explain

; T —

- e "

Al

— -
et - //7display all pen
~ $status._id = 1;//1 m e
=- 1@ $sql = "SELECT *
pu—— 111 FROM tbl_reques:
——— e 112 INNER JOIN tbl_i-
e e 113 ON r.item_id = i.
CERRED - r— 114 INNER JOIN tbl_e~
.“ e t——— 115 ON i.emp_id = e.=
B 116 INNER JOIN tbl_r
| oo 117 ON r.req_type_i:
| wovme - 118 WHERE r.req_st " _
— g ORDER BY r.r ’

W e % WRamen. Somlh Y, RoR saE
1Y [&9

| l
-

- SQL Query Execution Plans

 The Query Plan shows us exactly how a SQL
statement is being run by the engine

— Indexes being used
— Order that the tables are read
— Joins

 We can use these plans to help tune a query
— Find out the slow parts of a query
— Missing or poor index choices
— Out of date statistics

2
XDB systems

Query Plan

QUERY: (OPTIMIZATION TIMESTAMP: 12-04-2022 11:02:23)

select * from snapshot

Estimated Cost: 182920
Estimated # of Rows Returned: 2560531

1) informix.snapshot: SEQUENTIAL SCAN

Query statistics:

Table map

Internal name Table name

= napshot

type table rows _prod est_rows rows_scan

scan €1 2560709 2560531 2560708 00:01.32 182521

00:01.32

Query &
Query Plan
=~
Query
Statistics
est_cost
182921
— 3

XDB systems

- SET EXPLAIN

Use the “SET EXPLAIN” SQL statement to
start/stop the output of explain plans:

— SET EXPLAIN ON: write explain plans to a file for
the SQL statements that follow

— SET EXPLAIN OFF: turn off explain plans

— SET EXPLAIN ON AVOID _EXECUTE: Produce
explain plan without running the SQL

— SET EXPLAIN FILE TO “<filename>": Write explain
file to the specified file

4
XDB systems

- SET EXPLAIN

* SET EXPLAIN ON / SET EXPLAIN OFF:

SET EXPLAIN ON;
SELECT * FROM x WHERE y = 10;
SET EXPLAIN OFF;

* By default, the query plan is written to the file:
sgexplain.out

* File is created in the current directory (UNIX)

* |f use client app, the file will be in home directory of
the user that SQL was executed as

* File will be appended to each time more SQL is
executed

5
XDB systems

SET EXPLAIN

slowl.sql:

set explain file to "slowl.exp";

output to /dev/null

select c.customer num, o.order num
from customer ¢, orders o

where c.customer num = o.customer num

and c.company = "Play Ball!"
order by 2;

time dbaccess -e stores_demo slowl.sql > slowl.out 2>&l1 &

-rw-rw-rw—- 1 informix informix 1563 Dec 4 11:07 slowl.exp

XDB systems

SET EXPLAIN

QUERY: (OPTIMIZATION TIMESTAMP: 12-04-2022 11:07:00)

select c.customer num, o.order num

from customer c, orders o

where c.customer num = o.customer num
and c.company = "Play Ball!"

order by 2

Estimated Cost: 6
Estimated # of Rows Returned: 2
Temporary Files Required For: Order By
1) informix.c: SEQUENTIAL SCAN
Filters: informix.c.company = 'Play Ball!'

2) informix.o: INDEX PATH

(1) Index Name: informix. 102 4

Index Keys: customer num (Serial, fragments:

Lower Index Filter: informix.c.customer_pum =
NESTED LOOP JOIN

slowl.exp

ALL)
informix.o.customer_num

XDB systems

SET EXPLAIN

ZusEy Shememes slowl.exp (Continued)
Table map S g
____________________________ Query Statistics will be shown at the
Internal name Table name end of the plan
a7 < [EXPLAIN_STAT=1 in ONCONFIG]
t2 o
type table rows prod est rows rows scan time est cost
scan tl 1 3 28 00:00.00 4
type table rows prod est rows rows scan time est cost
scan t2 4 23 4 00:00.00 0
type rows_prod est rows time est_cost
nljoin 4 3 00:00.00 6
type rows_sort est _rows rows_cons time est _cost
sort 4 3 4 00:00.00 0

- SET EXPLAIN

For long running SQL or for Insert, Update or
Delete operations, use “AVOID EXECUTE” to get
the explain plan without running the SQL:

slow2.sql:

set explain file to "slow2.exp";
set explain on avoid execute;

update orders

set ship instruct = null
where customer num = 104;

XDB systems

SET EXPLAIN

dbaccess -e stores_demo slow2.sql
Database selected.

set explain file to "slow2.exp";
Explain set.

set explain on avoid execute;
Explain set. If use AVOID_EXECUTE will
NOT see the Query Statistics

update orders in the Explain Plan

set ship instruct = null
where customer num = 104;
0 row(s) updated.

Warning! avoid execute has been set

Database closed.

XDB systems

10

Dynamic Query Plans

onmode -Y <sid> <0|1]|2> [filename] Set or unset dynamic explain
O=0ff 1=plan + statistics on 2=only plan on

filename is a valid argument only when setting the

dynamic explain or dynamic explain statistics on

onmode -Y 10563 1 & Set Dynamic Explain for Session 10563

onstat -g ses

IBM Informix Dynamic Server Version 12.10.FC5AEE -- On-Line -- Up 1 days 12:01:36 --
2947104 Kbytes

session #RSAM total used dynamic
id user tty pid hostname threads memory memory explain
10657 informix - 0 - 0 16384 12480 off
10653 informix - 0 = 0 16384 12480 off
10563 informix 2 4243 apollo 1 73728 64480 on
10028 informix - 0 apollo 1 335872 321728 off
10011 informix - 0 apollo 1 241664 100072 off

44 informix - 0 = 1 626688 472280 off

43 informix - 0 = 1 626688 471576 off

42 informix - 0 = 1 618496 494080 off

41 informix - 0 - 1 102400 86784 off

XDB systems

11

- Dynamic Query Plans

Explain plan written to a file with the SID in the
name:

-rw-rw-rw- 1 informix informix 573 Apr 7 11:17 sqgexplain.out.10563

e Using “onmode -Y” will not produce anything until the next
statement runs — so no good for getting the explain plan for a
single, long running statement

* Limited value if prepared SQL is being executed
* Problems stopping the explain plan

e Capture the SQL to a file instead, and get the explain plan for
that...

12

XDB systems

Repeated
for other
tables

Create View (if applicable)

Query SQL

Cost/Rows Returned/Temp Tables/Directives

Anatomy of a Query Plan

[Table 1 : Name & Access Method
[Table 1 : Filters
[Table 1 : Index Info
—){ Table 2 : Name & Access Method
[Table 2 : Filters
[Table 2 : Index Info
[Table 1 & 2 : Join Method
[Subqueries
[Query Statistics (if enabled)

XDB systems

13

Query Plans

QUERY: (OPTIMIZATION TIMESTAMP: 04-09-2017 07:50:47)

select c.customer num, o.order num

from customer c, orders o Query SQL
where c.customer num = o.customer num

and c.company = "Play Ball!"
order by 2

Estimated Cost: 6
Estimated # of Rows Returned: 2
Temporary Files Required For: Order By

Cost/Rows Returned/Temp
Files/Directives

1) informix.c: SEQUENTIAL SCAN Table 1 : Name & Access Method
Order Filters: informix.c.company = 'Play Ball!' [Table 1 : Filters]
tables are
accessed 2) informix.o: INDEX PATH Table 2 : Name & Access Method
(1) Index Name: informix. 102 4
Index Keys: customer num (Serial, fragments: ALL) Table 2 : Index
Lower Index Filter: informix.c.customer num = Info
informix.o.customer num
NESTED LOOP JOIN | Table 1 &2 : Join Method]

XDB systems

Query Plans - Statistics

Query statistics:

Table map

Internal name Table name .

____________________________ Table Mapping

tl c

t2 o

type table rows _prod est _rows rows_scan time est_cost
““““““““““““““““““““““““““““““““““““ _ Table 1 Query Stats
scan tl 1 3 28 00:00.00 4

type table rows _prod est _rows rows_scan time est_cost
——— _ Table 2 Query Stats
scan t2 4 23 4 00:00.00 0

type rows_prod est _rows time est_cost :
_______________________ e M [Table 1 & 2 : Join Stats
nljoin 4 3 00:00.00 6

type rows_sort est rows rows_cons time est_cost
—— [Sort Stats]

sort 4 3 4 00:00.00 0

15
XDB systems

Query statistics:

Query Plans - Statistics

“scan” is shown for table scans
and index scans

Retrieved minus Produced is
the result of filters (usually)

Table map
Internal name Table name
t1 bigtab
t2 c
— -
Operation Num Records Num Records Duration
Produced Retrieved
type table rows_prod | est_rows | rows_scan | time est_cost
scan tl 11 11 175000 00:02.23 63585
type table rows_prod | est_rows | rows_scan | time est_cost
scan t2 297 21 8789 00:00.02 43
) \ J \ AN J
Rows
Returned | Duration |
type rows_prod est rows| time est_cost
nljoin 297 232 00:02.26 64058
Total Time
type rows_sort est _rows rows_cons | time est_cost
sort 297 232 297 00:02.26 58
. / /

* “time” will

show you the
slowest part
of the query

e Useful when

query is sub-
second
(ignores
overhead)

* Joins show

cumulative
time

XDB systems

1
P
c
[)
table rows prod est _rows rows_scan| time est_cost
tl 830895 40737 4140946 00:03.97 535572
\, <
table rows prod est_rows rows_scaantime R est_cost
t2 830895 21310 830895 00:06.67 1
\. J
rows_prod est rows| time est_cost
830895 39355 00:10.97 559218
table rows prod est _rows rows_scan| time est_cost
t3 0 8 830895 00:06.07 0
rows_prod est rows| time est_cost
0 41460 00:17.22 565627
/r
rows_sort est _rows rows_cons| time est_cost
0 41460 0 00:17.22 19701
- \

Query Plans - Statistics

Time for each
“scan” is for that
read

Joins and sort
are cumulative

17
XDB systems

- Access Methods

How is a table is read:

e Sequential Scan

— Full table scan

* |Index Path

— Table is read via an index

18
XDB systems

- Sequential Scans

* |f a Query Plan contains a Sequential Scan, all
rows of the table are read (before any filter is
applied)

* May not be bad

— If the table is small

— If most of the rows read from the table are needed,
then it may be okay

— Consider that many indexed reads of data can be
costly because of the read of the index, plus the read
of the data page

XDB systems

- Sequential Scans

A Scan of all Data Pages may be faster than lots of
Indexed Reads

Sequential Scan Indexed Reads

= Iﬁdex
\ Data Page

Page

Data
Page

But it depends on how many rows are actually needed

A scan of a large table can trash the cache

20
XDB systems

Sequential Scans

1) informix.bigtab: SEQUENTIAL SCAN

Filters: (informix.bigtab.a <= 20000 AND informix.bigtab.a >= 10)

type table |rows prod| est rows |rows scan| time est cost
scan tl 19991 175000 00:02.43 63585
Rows Rows Read
Produced

Filter is applied after each record is read
19,991 records matched the filter condition
175,000 - 19,991 = 155,009 records were discarded

Recommend an index on bigtab(a)

If rows_scan ~ rows_prod index may not help

21
XDB systems

- Sequential Scans

Why am | getting a scan on a table with an
index?

* Order of columns in an index (leading column)

* Functions applied to the column (TRIM, DATE,
UPPER, etc)

e Data type in query = table column datatype
e Statistics out of date

22
XDB systems

Index Read

1) informix.s: INDEX PATH

(1) Index Name: informix.snapshot idx5
Index Keys: instance_id snapshot id (desc) (Serial,

fragments: ALL)
Lower Index Filter: (informix.s.instance_id = 38 AND

informix.s.snapshot id = <subquery>)

“o_ 7
S

* |Index was used to access table (alias)

e Name of the index used to retrieve rows from the table
(snapshot_idx5)

 Columns in the index (instance_id, snapshot_id)
 The index was defined as descending on snapshot_id

e Serial, fragments ALL indicates PDQ is not in use and
fragment elimination not used

e Value of instance_id was passed to the query as a literal
e snapshot_id is obtained from a subquery

E— X DB SYSTEMS

- Index Read

select b
from bigtab
where a between 10 and 20000

1) informix.bigtab: INDEX PATH

(1) Index Name: informix.bigtab idx
Index Keys: a (Parallel, fragments: ALL)
Lower Index Filter: informix.bigtab.a >= 10
Upper Index Filter: informix.bigtab.a <= 20000

type table rows prod est rows rows_scan time est _cost

scan tl 19991 19991 19991 00:00.42 7396

o_”n

 “between” clause is using an index on column “a

e The index leaf nodes can be scanned within the lower
and upper limits

* Query Statistics show that all rows read were used

24
XDB systems

Index Filters

An index filter is applied after each record is read

3) informix.s: INDEX PATH

I Filters: informix.s.eff dt > 07/29/2020 I

(1) Index Name: informix.customer x01
Index Keys: id (Serial, fragments: ALL)
Lower Index Filter: informix.s.id = informix.sc.id

type table| rows _prod | est rows| rows_scan | time est _cost
scan t3 1183739 41762640] 7604110 03:02.00 1
Rows Rows Read
Produced

Including eff_dt at the end of the index would improve performance

XDB systems

25

Index Filters

3) informix.c: INDEX PATH

Filters: informix.c.notify email = 'Y'

(1) Index Name: informix. 338 1436

Index Keys: category code (Serial, fragments: ALL)

Lower Index Filter: (informix.l.correction type = informix.c.code

AND informix.c.category = 'S')
type table | rows _prod |est rows| rows_scan ||time est _cost
scan t3 0 8 830895 00:06.07 0
Rows Rows Read
6 seconds
Produced

Many reads to return O records!
Add notify_email to the index — or maybe partition?

26

XDB systems =—n—

- Index Filters

Functions applied to columns can result in a filter
e.g. TRIM

When applying operations to a column consider if
reverse operation can be done to the literal value

select *
from billhist .
where billno = "D5678" Filter
and (billdate + 3) >= "01/31/2023";

Operation applied to every row retrieved

from billhist 1
where billno = "D5678" No Filter
and billdate >= ("01/31/2023"::date - 3 units day)

select *

Fewer rows need to be read to satisfy the query
Operation evaluated ONCE

27
XDB systems

Partitioned Tables

Table is fragmented by INTERVAL:

create table fragtest (

id serial,

received dt date,

store char(6),

department char (2))

FRAGMENT BY RANGE (received dt)

INTERVAL (INTERVAL (1) DAY (9) TO day)
ROLLING (365 fragments) DISCARD

STORE IN (datadbs4)

PARTITION pl VALUES < "1/1/2020" IN datadbs4,
PARTITION p2 VALUES IS NULL IN datadbs4;

create index fragtest idx on fragtest(store, department);

Query uses received_dt — column used for partitioning:

select *

from fragtest

where store='009911' and department='00'
and received dt between date('06-01-2021') and date('06-10-2021") ;

28
XDB systems

Partitioned Tables

In this case, the index is partitioned with the table

Only the partitions matching the condition will be used
(fragment elimination)

The partitions/fragments are listed explicitly in the plan

1) informix.fragtest: INDEX PATH

Filters: (informix.fragtest.received dt <= 06/10/2021 AND
informix.fragtest.received dt >= 06/01/2021)

(1) Index Name: informix.fragtest idx

Index Keys: store department (Serial, fragments: 519,
520, 521, 522, 523, 524, 525, 526, 527, 528)

Fragments Scanned: (519) sys p519 in datadbs4, (520)
sys_p520 in datadbs4, (521) sys p521 in datadbs4, (522)
sys_p522 in datadbs4, (523) sys p523 in datadbs4, (524)
sys_p524 in datadbs4, (525) sys p525 in datadbs4, (526)
sys_p526 in datadbs4, (527) sys p527 in datadbs4, (528)
sys_p528 in datadbs4

Lower Index Filter: (informix.fragtest.department = '00'
AND informix.fragtest.store = '009911"')

20
XDB systems

- Key First

Used in a number of situations

— A column in the index is not specified in the query,
but a value later in the index is specified (examine
the order of columns in the index)

Index is on columns (a, b, c, d)
Query specifies a, b, d...not c

30
XDB systems

Key First

Skipped columns in the index

6) informix.pl: INDEX PATH

(1) Index Name: informix.prg pk

Index Keys: 1og token|le tokenlprog tokenlprog sng (Key-First)
(Serial, fragments: ALL)

Lower Index Filter: (informix.h.log token = informix.pl.log token AND
informix.h.e token = informix.pl.e_ token)

Index Key Filters: (informix.pl.prog seq =1)

Read of p1 has log_token, e_token, AND prog_seq
prog_token is NOT specified

Results in more rows read than needed

scan t9 8975 1082303360 1026188 00:04.81 1

31
XDB systems

Key First

Need columns in an index AFTER an inequality
operator

5) informix.oi: INDEX PATH
(1) Index Name: informix.oi transfers idx2

Index Keys: tran id item type item status login_id (Key-First)
(Serial, fragments: ALL)

Lower Index Filter: (informix.oi. tran_id = informix.an. tran id

AND informix.oi. item type = 'C')
Index Key Filters: (informix.oi.item status != 'D') AND
(informix.oi.item status != 'H')

“_u

Consider whether inequalities can be changes to “IN” or “=
or
Can the column orders in the index be changed

32
XDB systems

- Key First

Other reasons for Key-First include:

* Functions applied to indexed columns
 Wrong data type used

33
XDB systems

- Key Only

Used when the query can be satisfied from the
index
* No reads of data pages

 Fast!

* |Index must include all columns used in filters, joins,
select clause, order by...

select mytabl.a
from mytabl, mytab2
where mytabl.b = 10
and mytabl.c = mytab2.c
order by mytabl.d;

create index mytabl idx on mytabl(b,c,d,a);

34
XDB systems

Key Only

items_idx1(order_num, quantity)
Key-Only NOT used

select o.*, i.total price

from orders o, items i

where o.backlog = "n"
and o.order num = i.order num
and i.quantity > 1

order by i.manu_code

Estimated Cost: 5
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By

1) informix.o: SEQUENTIAL SCAN
Filters: informix.o.backlog = 'n'
2) informix.i: INDEX PATH
(1) Index Name: informix.items_ idxl
Index Keys: order num quantity (Serial, fragments: ALL)
Lower Index Filter: (informix.o.order num = informix.i.order num

AND informix.i.quantity > 1)
NESTED LOOP JOIN

XDB systems

Key Only

items_idx1(order_num, quantity, manu_code, total price)
Key-Only used

select o.*, i.total price

from orders o, items 1i
where o.backlog = "n" Performance improvement of a
BC. QuCIES S S eGSR IO Key-Only index read will be
and i.quantity > 1
order by i.manu_code compounded when used many
_ times in joins or subqueries
Estimated Cost: 4

Estimated # of Rows Returned: 1
Temporary Files Required For: Order By

1) informix.o: SEQUENTIAL SCAN
Filters: informix.o.backlog = 'n'

2) informix.i: INDEX PATH

(1) Index Name: informix.items idxl
Index Keys: order num quantity manu code total price (Key-Only)

(Serial, fragments: ALL)
Lower Index Filter: (informix.o.order num = informix.i.order num

AND informix.i.quantity > 1)
NESTED LOOP JOIN

IO

XDB systems

- Key Only

Big improvements possible by adding joining column to

the end of an index

select mytabl.a
from mytabl, mytab2
where mytabl.a 10
and mytabl.b mytab2.b;

create index mytabl idx on mytabl (a);

An index on mytab1(a) will help retrieval of records
A read of the data page is required to get the value for “b”

create index mytabl idx on mytabl(a, b);

An index on mytab1(a,b) will result in a key-only scan and
eliminate any need to read the data page

37
XDB systems

- Autoindex

Optimizer determines that it is most efficient to build a
temporary index

6) informix.grp: AUTOINDEX PATH
(1) Index Name: (Auto Index)
Index Keys: match flag

Lower Index Filter: informix.h.match flag = informix.g.match flag
NESTED LOOP JOIN

This is a potential indicator of a missing index

Will often see this when a view has been executed and results
placed in a temporary table

38
XDB systems

oin Methods — Nested Loop
Iterate through the table

—> Find matching rows in joined table

1) informix.o: SEQUENTIAL SCAN
2) informix.c: INDEX PATH

(1) Index Name: informix. 100_1
Index Keys: customer num (Serial, fragments: ALL)
Lower Index Filter: informix.c.customer num = informix.o.customer num

NESTED LOOP JOIN
3) informix.i: INDEX PATH

(1) Index Name: informix. 105 11
Index Keys: order num (Serial, fragments: ALL)
Lower Index Filter: informix.o.order num = informix.i.order num
NESTED LOOP JOIN

Read a row from table “o”

“.n
C

Read matching row from table

Read matching row from table “i” :

XDB systems

89

- Join Methods — Hash Join

Scan tablel — create hash table
Scan table2 — use hash to join with tablel

1) informix.c: SEQUENTIAL SCAN
2) informix.o: SEQUENTIAL SCAN

DYNAMIC HASH JOIN
Dynamic Hash Filters: informix.c.customer num = informix.o.customer num

3) informix.i: SEQUENTIAL SCAN

DYNAMIC HASH JOIN
Dynamic Hash Filters: informix.o.order num = informix.i.order num

Read all rows from table “c” — build hash

Read all rows from table “o” — match on hash key — build new hash

“:n
|

Read all rows from table

— match on hash key

40
XDB systems

- Join Methods — Hash Join

* Hash joins can be faster than nested loop joins
— When returning many rows from joined table
— Using PDQ

* Will take longer before seeing first rows

* Will use temp space

e OPTCOMPIND will favor one join method over
another

OPTCOMPIND - Controls how the optimizer determines the best
query path. Acceptable values are:

0 Nested loop joins are preferred

1 If isolation level is repeatable read,

works the same as 0, otherwise works same as 2
2 Optimizer decisions are based on cost only

XDB systems

Statistics

Statistics have a huge impact on the query plan chosen

select first 1 token from temp load where profile token = 103624815
order by token asc

1) informix.temp load: INDEX PATH

Filters: informix.temp load.profile token = 103624815

(1) Index Name: informix. 86875379 205101811 . .
Index Keys: token (Serial, fragments: ALL) Chosen index is on token
profile_token is a filter
Query statistics: No need to sort results

The final cost of the plan is reduced because of the FIRST n specification in
the query.

Table map :

Internal name Table name

e temp_load

type table |rows_prod Iest_rows Irows_scan{itime i est_cost
sean €1 L ss0 208364 Jloo:00.80 | 43

XDB systems

42

Statistics

After updating statistics on token & profile_token:

select first 1 token from temp load where profile token = 103624815
order by token asc

Temporary Files Required For: Order By
1) informix.temp load: INDEX PATH
(1) Index Name: informix.temp load x06

Index Keys: profile token (ngial, fragments: ALL)
Lower Index Filter: informix.temp load.profile token = 103624815

Query statistics: Chosen index is on profile_token
"""""""""" Now need to sort the results

Table map

Internal name Table name

e temp_load

type table |jrows prod | est rows | rows_scan ||time est_cost

scan Ll""li """""" IE """" li """"" HBB?BBTBB“{“S """"

type rows_sort est rows rows_cons time est_cost

sort 1 2 L 00:00.00 0

XDB systems

Views

QUERY: (OPTIMIZATION TIMESTAMP: 11-01-2020 19:04:46)

create view "informix".program v (log_token,id,

<snip> H
2 Create View
Estimated Cost: 1744013952
Estimated # of Rows Returned: 45423600 SQL & Query
1) prod:informix.prg: SEQUENTIAL SCAN Plan
Filters: prod:informix.program seq = 1
<snip>
QUERY: (OPTIMIZATION TIMESTAMP: 11-01-2020 19:04:46) ™

select d.first name, d.last name,

<snip>
Estimated Cost: 22521730
Estimated # of Rows Returned: 285 SQL &
1) informix.h: INDEX PATH
SR : Query Plan
_ Join to
6) (Temp Table For View) : SEQUENTIAL SCAN “
Temp

DYNAMIC HASH JOIN
Dynamic Hash Filters: (informix.h.log token = (Temp Table For View) Table fOr
.log_token AND informix.h.id = (Temp Table For View).id) Viewn y

6) (Temp Table For View) : AUTOINDEX PATH

(1) Index Name: (Auto Index)
Index Keys: log_ token id
Lower Index Filter: (informix.h. log_token = (Temp Table For View) .log_token AND
informix.h.id = (Temp Table For View) .id)
NESTED LOOP JOIN

44

XDB systems

- Views

e View is fully realized (executed)
e Results are placed in temp space
 Temp table of results joined to query

* Can be very slow
* May use significant temp space

45
XDB systems

- Views

* View folding may help
* |[FX_FOLDVIEW in onconfig file

IFX FOLDVIEW - Enables (1) or disables (0) folding views that

have multiple tables or a UNION ALL clause.
Disabled by default.

IFX FOLDVIEW 1

46
XDB systems

- Views

“create view” in explain plan may show
conditions/filters brought in from the query

Query:
select
from mytab, myview
where mytab.id = myview.id
and mytab.name = myview.name
and mytab.name = 'Mike'’

Explain Plan:

create view myview(...)
select ...

from ...

where ...

and name = 'Mike'

The filters will improve the performance when realizing the view
Use less temp space
Faster!

47
XDB systems

Views

Attempt to reduce the view dataset
May need to simplify joins, or repeat filters, or subqueries

select

from mytab, myview

where mytab.id = myview.id
and mytab.name myview.name
and mytab.name 'Mike'
and myview.name = 'Mike'

where mytab.id in (select val from othertab)
and mytab.id = myview.id

<

where mytab.id in (select val from othertab)
and mytab.id = myview.id
and myview.id in (select wval from othertab)

Can you remove UNIQUE in view definition?

Sometimes have no choice but to rewrite the view SQL into the query

48
XDB systems

select count (*)

from 1logh 1lh

where DATE (informix.lh.eff dt) >
and DATE (informix.lh.eff dt) <

1) informix.lh: INDEX PATH

Filters:
09/05/2022)

(DATE (informix.lh.eff dt) >

(1) Index Name: informix.logh x3
Index Keys: eff dt status (Key-Only)
Lower Index Filter: informix.lh.eff dt
interval(1) day to day
Upper Index Filter: informix.lh.eff dt

Query statistics:

Table map

Internal name Table name

v m

type table rows prod est rows rows_scan
scan t1 91158 5 91158 0
type rows_prod est rows rows_cons time
growp 1 1 ouss 00:00.28

time

Fun with Dates

eff _dtis a datetime

LU= 02 2 Use DATE function

"09/05/2022";

07/06/2022 AND DATE (informix.lh.eff dt) <

(Serial, fragments: ALL)
>= EXTEND (07/06/2022 ,year to minute) +

< EXTEND (09/05/2022 ,year to minute)

Optimizer changed literals to datetimes

Index is used

00:00.26 3

XLJD SYSTEMS

Index used for Ordering

select

from log header
where lh sequence > 534088721 and lh sequence <= 534089221
order by lh sequence;

create index "informix".log header ix on "informix".log hdr

(lh_sequence desc) :
Order by clause matches index

Estimated Cost: 1
Estimated # of Rows Returned: 1

1) informix.log header: INDEX PATH

(1) Index Name: informix.log header ix
Index Keys: lh sequence (desc) (Reverse) (Serial, fragments: ALL)
Lower Index Filter: informix.log header.lh sequence > 534088721
Upper Index Filter: informix.log header.lh sequence <= 534089221

Query statistics:

No need for a temporary table for order by

Table map
Internal name Table name
e log_header
type table rows prod est rows rows_scan time est cost
scan t1 202 1 202 00:00.08 1

XDB systems

- Wrap Up

e Explain plans give a detailed insight into how
the optimizer chooses to execute SQL

e Most useful tool to determine individual SQL
performance

* More situations than have been covered here

51
XDB systems

Advanced Informix Consulting and Suppo

* Informix Remote DBA 24/7 Peace of mind for
your systems

* Expert consultants for any Informix problem

* Support for Informix Upgrades from any
version

* Migrations to new hardware, let us help
virtualize your systems

* Get help configuring and managing UNIX
systems

* Informix cloud migrations

* IBM Informix sales
* Let us tune your system, we can mez Y I EM
potential of your database

* What can we do for you toc

R

Questions?

Send follow-up questions to
mike@xdbsystems.com

XDB systems

Thank You

Mike Walker

mike @xdbsystems.com

For more information:
https://www.xdbsystems I S I EMS

