
Smart Triggers/Push Data
NAGARAJU & BRIAN



Value Proposition

 Selectively trigger events based on changes in server data

 Real time ‘push’ notifications help clients avoid polling the server

 Small data flow allows simple small clients to work with many  triggered 

events at once



What are Smart Triggers in JDBC

 Smart Triggers are registered events on the server that you subscribe to 

from your JDBC client

 Triggers are based on a SQL statement query that matches changes made to a 

table

 SELECT id FROM CUSTOMER WHERE cardBalance > 20000;

 One client can listen to many events from many tables, allowing a wide 

range of monitoring opportunities

 Monitor account balances

 Take action on suspicious behaviors



What does a Smart Trigger Look Like?

 It’s designed to be a simple set of classes/interfaces in Java

 Designed for both simple standalone monitor applications as well as 

integration into multi-threaded environments

 Leverages the Push Notification feature in the server to do the heavy 

lifting

 Receives JSON documents when a trigger occurs



Use case: Banking

 Bank accounts

 I want to be alerted when an account balance drops below zero dollars

 I don’t want to write SPL or install stored procedures and triggers

 I want to be notified in my client application

 I don’t want to poll the database for this information or re-query each time a 

balance changes from the client



Smart Trigger Bank Code

public class BankMonitor implements IfmxSmartTriggerCallback {
public static void main(String[] args) throws SQLException {

IfxSmartTrigger trigger = new IfxSmartTrigger(args[0]);
trigger.timeout(5).label("bank_alert");
trigger.addTrigger("account", "informix", "bank", 

"SELECT * FROM account WHERE balance < 0", new BankMonitor());
trigger.watch(); //blocking call

}

@Override
public void notify(String json) {

System.out.println("Bank Account Ping!");
if(json.contains("ifx_isTimeout")) {

System.out.println("-- No balance issues");
}
else {

System.out.println("-- Bank Account Alert detected!");
System.out.println("   " + json);

}
}

}



Demo!



Smart Triggers in Other Languages

 Adding Smart Triggers to the JDBC driver allows other languages to have 

this support

 Groovy, JavaScript (NodeJS), Python, Scala and more



NodeJS Smart Trigger Example

var java = require("java");
java.asyncOptions = {
syncSuffix: ""

};

java.classpath.push("ifxjdbc.jar");

var smartTrigger = java.newInstanceSync("com.informix.smartTrigger.IfxSmartTrigger", 
"jdbc:informix-sqli://localhost:20290/sysadmin:USER=informix;PASSWORD=informix");

smartTrigger.timeout(10);

smartTrigger.open();
smartTrigger.addTrigger("pushtest", "informix", "ewdb", "SELECT * FROM pushtest", "smart-trigger");
smartTrigger.tableRegistration();

var foo = smartTrigger.readFromSmartBlobObject();
console.log(foo);



Use Case: Blockchain

 With Smart Triggers we can integrate into Blockchain use cases

 Changes to the data with Smart Triggers can initiate a smart contract!

 Many blockchain examples/demos/applications use NodeJS

 Having JDBC work with NodeJS allows us to be part of these examples and leverage 
our technology alongside blockchain

 Conference registration blockchain demo using Ethereum public 

blockchain

 Conference registration smart-contract

 Callback registered on conference registration blockchain smart-contract inserts data 
into Informix database.

 Smart-trigger registered on Informix conference database executes Hotel 

Reservation smart-contract in blockchain.



Blockchain Demo!



Push data to Client (Server functionality)

 Push vs Pull architecture

 Event driven programming model



Logical Log

Grouper

Snoopy

Database

Push-data Clients

sesid = task(“pushdata open”)

Task(“pushdata register”, {json})

Task(“pushdata register”, {json})

While (1)

{

bytes=Ifx_lo_read(sesid, buf, size, err)

Execute action;

}  

Push-data Sample app

Event Data

Event Data

Event Data

Event Data

OLTP Clients

Server Architecture Diagram



API Calls

 TASK(‘pushdata open’);

 Register client session as a push data session

 Returns session id, need this id to read event data.

 TASK(‘pushdata register’, {event and session attributes});

 Register event conditions, and session specific attributes

 Smart blob read API (ifx_lo_read() or equivalent call)to read event data

 Pseudo smart blob interface to read event data.

 Returns JSON document(s).

 Can be configured as blocking or non-blocking call

 TASK(‘pushdata deregister’, {event condition details});

 De-register event conditions.



JSON attributes for registering new event conditions

Input attribute name Description

table Table name to be registered

owner Table owner

database Database name

query Select statement including projection list and where clause to register for changes in a data set.

label User defined string to be returned along with event document – useful to differentiate between events 
when more than one push-data event registered within the the same session

timeout How long client gets blocked in smartblob read api for new events to be returned by server before 
returning timeout document.

commit_time Return event data committed after this transaction commit time.

txnid 8 byte unique id. Higher order 4 bytes: commit work log id, lower order 4 bytes: commit work log 
position.

max_pending_ops Maximum number of event records to be kept  in the session pending 

maxrecs Maximum number of records to be returned by smartblob api read call.

Example Command: 
execute function informix.task('pushdata register', 
{table:"creditcardtxns",owner:"informix",database:"creditdb",query:"select uid, cardid, carddata from creditcardtxns where 
carddata.Amount::int >= 100",label:"card txn alert"})



Event Data JSON Attributes:

Attribute name Description

operation Operation type: Insert/Delete/Update

table Table name

owner Table owner

database Database name

label Optional user specified data for the even condition.

txnid 8 byte unique id. Higher order 4 bytes: commit work log id, lower order 4 bytes: commit work log position.

commit_time Transaction commit time for the event data.

op_num Increasing sequence number for the event document within a given transaction. If transaction generate 10 
events, then each document returned will have incrementing op_num starting from 1 to 10. 

rowdata Row data in JSON document format. Data is returned in column name as key and column data as value.

before_rowdata Before row data for “update” operation.

ifx_isTimeout Document with this attribute is returned with value set to “true” if no events gets triggered within the timeout 
interval specified by the client.

ifx_warn_total_skipcount Warning document with this attribute is returned with cumulative number of discarded events due to 
max_pending_ops attribute threshold.



Example event data documents

 Sample output for Insert operation:

{“operation”:"insert",”table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn 
alert",”txnid”:2250573177224,”commit_time”:1488243530,”op_num”:1,”rowdata”:{“uid”:22,”cardid”:"6666-6666-
6666-6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T10:35:10.000Z } }}

 Sample output for Update operation:

{“opertion”:"update",table:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn 
alert",”txnid”:2250573308360,”commit_time”:1488243832,”op_num”:1,”rowdata”:{uid:21,cardid:"7777-7777-7777-
7777",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":"25-Jan-2017 16:15"} 
},”before_rowdata”:{“uid”:21,”cardid”:"6666-6666-6666-6666",”carddata”:{"Merchant":"Sams 
Club","Amount":200,"Date":2017-05-01T10:35:10.000Z  } }}

 Sample output for Delete operation:

{“opertion”:"delete",”table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn 
alert",”txnid”:2250573287760,”commit_time”:1488243797,”op_num”:1,”rowdata”:{“uid”:22,”cardid”:"6666-6666-6666-
6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T13:35:06.000Z } }}

 Sample output for multi row document  when maxrecs input attribute set to greater than 1:

{[

{“operation”:"Insert",”table”:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn alert", 
“txnid”:2250573309999,”commit_time”:1487781325,”op_num”:1,”rowdata”:{uid:"7",”cardid”:"6666-6666-6666-
6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T15:10:10.000Z } }},

{“operation”:"insert",table:"creditcardtxns",”owner”:"informix",”database”:"creditdb",”label”:"card txn 
alert",”txnid”:2250573177224,”commit_time”:1488243530,”op_num”:1,”rowdata”:{“uid”:22,”cardid”:"6666-6666-6666-
6666",”carddata”:{"Merchant":"Sams Club","Amount":200,"Date":2017-05-01T16:20:10.000Z } }}

]}



Command to print all sessions:
Onstat –g pd  

push-data session structure at 0x5950e028
push-data session id: 70 0x46
Smartblob file descriptor: 39
Number of event conditions: 1
Number of pending event operations: 51
Number of discarded event operations: 0
Total event operations returned to client: 11361

Frist tx begin work logpos: 304:e9e0f0, commit work pos: 305:b697a8
Last txn begin work logpos: 304:e9e0f0, commit work pos: 305:b697a8

Command to print all event conditions:

Onstat –g pd event

push-data subsystem structure at 0x584cc028

push-data session structure at 0x588f5028

push-data session id: 39 (0x27)

Number of event conditions: 1

Push-data event structure at 0x461ed028

Full Table Name: ycsb:informix.usertable

User data: testing...

Replicate name: pushrepl_250_1487957951_1352060721

Onstat commands 



Command to print information about specific session:

Onstat –g pd 70

push-data session structure at 0x5950e028

push-data session id: 70 0x46

Smartblob file descriptor: 39

Number of event conditions: 1

Number of pending event operations: 51

Number of discarded event operations: 0

Total event operations returned to client: 11361

Frist tx begin work logpos: 304:e9e0f0, commit work pos: 

305:b697a8

Last txn begin work logpos: 304:e9e0f0, commit work pos: 

305:b697a8

Command to print event conditions for specific 

session:

Onstat –g pd 39 event

push-data subsystem structure at 0x584cc028

push-data session structure at 0x588f5028

push-data session id: 39 (0x27)

Number of event conditions: 1

Push-data event structure at 0x461ed028

Full Table Name: ycsb:informix.usertable

User data: testing...

Replicate name: 

pushrepl_250_1487957951_1352060721

Onstat commands 



Comparing Smart Trigger and Regular I/U/D Trigger

Smart Trigger Regular Trigger(I/U/D)

Post Commit Pre Commit

Register Trigger on a specific Dataset/Event Trigger gets fired for all changes

Asynchronous and Linear Scalability Synchronous

Data is in JSON format SQL format

Trigger logic gets executed in the client Trigger logic gets executed in the server

Natural fit for event driven programming 

model

-

No schema changes required to define new 

smart trigger

Require schema changes and exclusive lock 

on the table to modify trigger definition



Comparing Push data and CDC

Push data CDC

Designed for Smart Triggers Designed for Data streaming/replication

Can register where clause No where clause support

Data in JSON format Byte stream

Push technology Push technology

Only committed transactions are sent to 

Smart Trigger analysis

All records returned to the user including 

rollbacked operations

*Once the client disconnect from the server, 

events for the client aren’t captured/staged

CDC can read old log files



Questions ?


