
© 2013 IBM Corporation
1

IBM Informix 12.1 – Simply Powerful

Informix Enterprise Replication & Flexible Grid

© 2013 IBM Corporation

Informix 12.1

22

Agenda – The Informix Flexible Grid

• Enterprise Replication – the Foundation

• What is the Informix Flexible Grid?

• Grid - Technical Overview & Requirements

• Grid Setup

• Grid Operations and Monitoring

• Other Grid Features

• Grid Benefits

• Grid and the Open Admin Tool

• Grid new features in 12.1

• Summary

© 2013 IBM Corporation

Informix 12.1

3

� The entire group of servers is the
replication domain
� Any node within the domain can replicate

data with any other node in the domain
� Servers in domain can be configured to be

root, non-root and Leaf

� Low data transfer latency

� Already integrated in the

server!

� Flexible

� Choose what to replicate

– column level!

� Choose where to replicate

– all nodes or select

� Scalable

� Add or remove

servers/nodes easily

BENEFITS

Enterprise Replication (ER) a.k.a CDR

� Supports
� Heterogeneous OS, Informix versions,

and H/W

� Secure data communication

� Update anywhere (Bi-directional

replication)
� Conflicting updates resolved by

Timestamp, stored procedure, or
always apply

� Based on log snooping

© 2013 IBM Corporation

Informix 12.1

4

ER & Informix Flexible Grid

• Informix Flexible Grid takes Enterprise
Replication (ER) to the next level

• Flexible scalability

• Subset of data

• Source and target can have different database,
table and column names

• Integrated

• Compatible with other availability solutions

• Can coexist with MACH clusters

• Any server can also have secondary

• Shared disk secondary (SDS)

• Remote secondary (RSS)

• Secure data communications

© 2013 IBM Corporation

Informix 12.1

5 06/05/13

Informix Enterprise Replication (ER)

�Log based, Transaction oriented replication

�Asynchronous, Homogeneous (IDS 7.22+ only)

�Primary/Target + Update anywhere

�Consolidation, Dissemination, Workload partitioning,
Failover

�Tightly coupled with the server

�Web and command line administration

© 2013 IBM Corporation

Informix 12.1

6 06/05/13

ER History

� Initial Release: 7.22 in 12/1996

• Version I - 7.22 - 7.30 releases, peer to peer

� Version II (7.31 & 9.2x)

• Queue and NIF redesign, Hierarchical Routing

� Version III (9.3)

• Extensibility, Increased parallelism, Smart blob queuing, In-place
alter to add/drop CRCOLS, Serial Col Primary Key Support, …

� Version IV (9.4)

• ER/HDR support, Large transaction support, Complex Type
support, Performance enhancements, Network Encryption

� Version V (10.x)

• Templates, Alter Support, Resync Support, Mastered Replicates,
Shadow Replicates

� Version VI (11.x)

• SSL, Performance, Monitoring, Role Separation, Dynamic
Features, New event alarms, SQL Admin API usage, and Work
with compressed data

© 2013 IBM Corporation

Informix 12.1

7 06/05/13

High Availability Data Replication (HDR) & ER differences

� Provides single primary and single
secondary

� Primary and secondary must run
the same executables and have
similar disk layout

� Secondary restricted to report
processing

� Simple to set up and administer

� Primary and secondary are mirror
images

� Does not support blobspace blobs

� Replication can be synchronous

� Primary purpose is for high
availability

HDR

• Allows configurable source(s) /

target(s)

• Source/target do not have to be

the same

• Allows full usage of both source /
target

• Setup and administration more

complex

• Source and target can be different

• Supports blobspace blobs

• Replication is asynchronous

• Primary purpose is for data
distribution

ER

© 2013 IBM Corporation

Informix 12.1

8 06/05/13

How ER replicates a Transaction

1. A client application performs a transaction in a database table that has a
defined replicate

2. The transaction is put into the logical log

3. The log capture component (snoopy) reads the logical log and passes the
log records onto the grouper component

4. The grouper thread evaluates the log records for replication and groups
them into a message (original transaction)

5. The grouper thread places the message in the send queue - under certain
situations, the send queue spools messages to disk for temporary storage

6. The send queue transports the replication message to the target server

7. The replication message is placed in the receive queue at the target
server

8. The data sync thread applies the transaction in the target database - if
necessary, the data sync component performs conflict resolution

9. An acknowledgment that the message was successfully applied is placed
in the acknowledgment queue

10.The acknowledgment message is sent back to the source server

© 2013 IBM Corporation

Informix 12.1

9 06/05/13

ER – how it works

Source Target

Spool

Global
Catalog

syscdr

Logical

Log

Grouper

Snoopy

NIF

Data
Synch

DatabaseRegroups transaction
and
performs evaluation Target apply

threads

Transmits Txn
to targets
Transmits Txn
to targets

Database

onstat -g ddr

-g cat

-g nif

-g rqm recvq

-g dss-g rqm
-g rqm sendq

-g rqm
ctrlq

-g rqm syncq

•Control

•Queue
•Send

•Queue

© 2013 IBM Corporation

Informix 12.1

10 06/05/13

Send and Receive Data Queues

� Queues receive or deliver replication data to and from servers that
participate in a replicate

� Send queue

– Replication data stored in memory on source for delivery to participants

– If the send queue fills, ER spools the send-queue transaction records to
a dbspace and the send-queue row data to an sbspace (stable queue)

� Receive queue

– Replication data stored in memory at the target database server until it
acknowledges receipt of the data

– If the receive queue fills as a result of a large transaction, ER spools the
receive queue transaction header and replicate records to a dbspace
and the receive queue row data to an sbspace (stable queue)

� Managed by the Reliable Queue Manager (RQM)

� Configurable using CDR_QUEUEMEM configuration parameter

© 2013 IBM Corporation

Informix 12.1

11 06/05/13

� Table must have a primary
key (Not Anymore!!!)

� SQLHOSTS group entries

� Logged databases

� Logical Logs

� Conflict Resolution

� Topology

� Scope (Row/Transaction)

– Rollback affects only Target

� Stable Queue

� Time synchronization

General ER Requirements

� Server to Server communications configured
for all servers involved in ER

– /etc/hosts

– /etc/services

– Trusted environment

• hosts.equiv

• .rhosts

– Test: rlogin or dbaccess � connection �
connect

� Logical logs (dbspace & archive)

� Extra database space for CRCOLS and delete

tables

� Dbspaces for send and receive queues

� Dbspace for grouper paging file

� Disk space/directories for ATS and RIS files

© 2013 IBM Corporation

Informix 12.1

12 06/05/13

Requirements - Global Catalog

� Global inventory of ER configuration information and state

– Found on all root and nonroot replication servers

– Stored in the syscdr database

• syscdr created when the first server is defined for replication

� The global catalog includes the following:

– Enterprise Replication server definitions and state

– Routing and connectivity information

– Replicate definitions and state

– Participant definitions and state

– Replicate set definitions and state

– Conflict detection and resolution rules and any associated SPL routines

� Tables in one global catalog instance are automatically replicated to the
global catalogs of all other replication servers (except leaf servers)

– Allows for management of complete ER domain from one non-leaf replication server

� Leaf replication servers have limited catalogs

© 2013 IBM Corporation

Informix 12.1

13 06/05/13

srv1tcp1 ontlitcp dallas port1

srv1tcp2 ontlitcp dallas port2

srv1shm onipcshm dallas srv1shm1

srv2tcp1 ontlitcp houston cdr2

srv2shm onipcshm houston srv2shm

Label Type Server Service Options

srv1_g group - - i=1

srv1tcp1 ontlitcp dallas port1 g=srv1_g

srv1shm onipcshm dallas srv1shm1

srv2_g group - - i=2

srv2tcp1 ontlitcp houston cdr2 g=srv2_g

srv2shm onipcshm houston srv2shm

CDRID –
any number between
1 and 32768

Must be unique within
replication domain.

g=srv2_g NO!!!
ER groups should only contain
TCP connections.

Setup - Sqlhosts

© 2013 IBM Corporation

Informix 12.1

14 06/05/13

Setup - Servers

� Define first Server

cdr define server --connect=stan \

--idle=500 --ats=/cdr/ats --ris=/cdr/ris \

--atsrisformat=text --init g_stan

� Add another server

cdr define server -c oliver -i 600 \

-A /cdr/ats -R /dev/null -X xml \

-S g_stan -I g_oliver

If timeout is 0 (default),

The connection does not time out.

Adds server group to the

replication domain

Synchronizes catalogs
with the catalogs on
the existing database
server stan

© 2013 IBM Corporation

Informix 12.1

15 06/05/13

Setup - Replicates

� Replicates

–Defines Participants

–Defines what data to transmit

–Defines conflict resolution rules and scope

� Replicate set

–Grouping replicates so they have the same characteristics

� Templates

–Easier set up of replication with large numbers of tables to
replicate

–Defines a group of master replicates and a replicate set

© 2013 IBM Corporation

Informix 12.1

16 06/05/13

Setup - Simple Example

cdr define server --init priserv

cdr define server --connect=bserver --init secserv --sync priserv

cdr define replicate --conflict ignore myrepl \

"atest@priserv:informix.tab1" "SELECT * FROM tab1" \

"btest@secserv:informix.tab1" "SELECT * FROM tab1"

cdr start repl -c priserv myrepl

Monitor using:

• cdr list serv

• message log

• onstat -g nif (S/T)

• cdr list repl

“Select *” is converted into:

select col1, col2, col3…”

Server group name

© 2013 IBM Corporation

Informix 12.1

17 06/05/13

Setup – Configuration Parameters

� CDR_EVALTHREADS - The number of grouper eval threads

� CDR_DSLOCKWAIT - Number of secs to wait to release DB lock

� CDR_QUEUEMEM - The maximum amount of memory (KB)

� CDR_NIFCOMPRESS - Controls the network interface

� CDR_SERIAL - Serial Column Sequence

� CDR_DBSPACE - The dbspace name for the syscdr

� CDR_QHDR_DBSPACE - The name of the transaction record

� CDR_QDATA_SBSPACE - The names of sbspaces for spooled

� CDR_MAX_DYNAMIC_LOGS - Maximum number of dynamic logs

� CDR_SUPPRESS_ATSRISWARN - Suppress DSync error & warning code

� CDR_ATSRISNAME_DELIM - Delimiter used in the time portion of
ATS and RIS text files

� CDR_DISABLE_SPOOL - Controls generation of ATS/RIS files

© 2013 IBM Corporation

Informix 12.1

18 06/05/13

A B

C

Fast Network

Fred can update an

order faster than can be

delivered from ‘A’ to ‘C’

on the ‘Slow Network’

Sally enters a

new order on ‘A’

What is Conflict Resolution?

• What to do when the original order finally arrives from A
after Fred’s update has been applied?

• Who Wins???

© 2013 IBM Corporation

Informix 12.1

19 06/05/13

What if Fred Deleted the order?

A B

C

Fred can also delete

an order faster than can

be delivered to ‘C’ on the

‘Slow Network’

What to do when the original

order finally arrives from A?
Deleted Row Tables

Fast Network

© 2013 IBM Corporation

Informix 12.1

20 06/05/13

Conflict Resolution

• Method to determine if the current version or a just received
version of the row should ‘win’

CR Type Description

Ignore Row must be applied as is

*Timestamp Most recent update wins

Upsert processing

*Timestamp with SPL If time stamps are identical, call stored procedure

Delete Wins DELETEs and INSERTs win over UPDATEs;
else row/transaction with the most recent time

stamp applied

Always Apply (10.0) Like Ignore but performs upserts

© 2013 IBM Corporation

Informix 12.1

21 06/05/13

Defining Shadow (Hidden) Columns

Table Specification Description

WITH CRCOLS Required for time stamps and TS UDR conflict resolution

Creates two hidden shadow columns used for conflict resolution

• cdrserver: contains the identity of the server where the last modification
occurred

• cdrtime: contains the time stamp of the last modification

WITH ERKEY Used for tables that do not have a primary key

3 columns added: ifx_erkey_1, ifx_erkey_2, and ifx_erkey_3

Visible columns – can be indexed and viewed in catalogs

Columns used to create a unique index (PK) and a unique constraint

WITH REPLCHECK Creates the visible ifx_replcheck shadow column that is used for
consistency checking

Must create a new unique index on the primary key and the ifx_replcheck
column

Allows the server to determine whether rows in different tables have
different values without comparing the values in those rows

ALTER table
tabname add

CRCOLS;

CREATE table
tabname (...) with

CRCOLS

© 2013 IBM Corporation

Informix 12.1

22 06/05/13

ATS and RIS files

� Aborted Transaction Spooling

–Transactions that fail to be applied to the target database

–Entire transaction is aborted

–Transactions defined with row scope that have aborted rows but
are successfully committed on the target tables are not logged

–All rows that fail conflict resolution for a transaction that has row
scope defined are also written to the RIS file

� Row Information Spooling

–Replicate row data that fails conflict resolution or encounters
replication order problems

–Replication exceptions (such as upserts, insert� update)

–SPLs return codes called to resolve a conflict

© 2013 IBM Corporation

Informix 12.1

23 06/05/13

Routing - Fully Connected

A

B

C

• Each server connects directly to every other

database server in the replication environment

• No additional routing is necessary to deliver

replication messages

© 2013 IBM Corporation

Informix 12.1

24 06/05/13

Routing - Hierarchical Tree

A (root)

B (non-root) C (non-root)

B1 (leaf) B2 (leaf) C1 (leaf)

C2 (leaf)

• A root server is fully
connected to all other root
servers

• A nonroot server
forwards all
replicated
messages for other
root servers (and
their children)
through its parent

• All root and nonroot
servers are aware
of all other servers
in the replication
environment.

© 2013 IBM Corporation

Informix 12.1

25 06/05/13

Routing - Hub/Spoke

A (root)

B (leaf)

C (leaf)

D (leaf)

E (leaf)

© 2013 IBM Corporation

Informix 12.1

26 06/05/13

Primary-Target Replication

�Flow of information is in one direction

�Changes at many target servers are not replicated to the
primary

�One-to-many replication (data distribution)

–All changes to a primary database server are replicated to many
target database servers

�Many-to-one replication (data consolidation)

–Many primary servers send information to a single target server

© 2013 IBM Corporation

Informix 12.1

27 06/05/13

Update-anywhere replication

� Changes made on any participating server are replicated to all other
participating servers

� Allows users to function autonomously even when other systems or
networks in the replication system are not available

© 2013 IBM Corporation

Informix 12.1

28 06/05/13

Things to think about Scope

� Transaction scope is really “All or Nothing”

– If one row fails within the transaction and you are in transaction scope, then all
of the rows fail

– The transaction is always applied as a transaction

– The transaction is NOT rolled-back on the source

� Triggers are normally not fired on the target

– Firing triggers can be a way to replicate a procedure rather than replicate a
table change

� Timed Based replication is not a good thing

© 2013 IBM Corporation

Informix 12.1

29

• I want to create a grid with a mixture of hardware, software, and
Informix versions

• I want to set up my grid quickly and easily

• I want to easily administer ALL of servers in my grid

• I want my grid to support from 2 to 1000s of servers

• I want to synchronize my schema and data across the grid

• I want to be able to perform rolling upgrades and planned
maintenance with no down time

• I want to scale capacity when and where needed within minutes?

Informix Flexible Grid – Questions Addressed …

© 2013 IBM Corporation

Informix 12.1

30

Informix Flexible Grid

• Comprehensive suite of capabilities that allows you to optimize
utilization of your existing environment and maintain 24x7
operations

• Administer all servers remotely with SQL or the OpenAdmin Tool
(OAT)

– Define which servers are allowed to administer the grid

– Attach to that server and administer all servers in your grid

– Administer remotely with no on-site requirements

• Set Up Initial Grid in minutes or hours, rather than in days or
weeks

© 2013 IBM Corporation

Informix 12.1

31

Informix Flexible Grid – What does it provide?

• The ability to create small to massively sized grids easily

• The ability to mix hardware, software, and versions of Informix in
the Grid

• Centralized, simultaneous administration of servers and databases
in the Grid

• Workload balancing across nodes in the grid

• Rolling upgrades (0 downtime during upgrades of O/S or Informix)

• Informix server/node cloning made easy

• Selective data replication if desired (just like in ER, but more
powerful)

© 2013 IBM Corporation

Informix 12.1

32

Just how scalable and easy to manage is Flexible Grid?

© 2013 IBM Corporation

Informix 12.1

33

Informix Flexible Grid – Technical Features

• Provides a means of replicating DDL across multiple nodes

• CREATE TABLE, CREATE INDEX, CREATE PROCEDURE…

• Ability to replicate the execution of a statement rather than just the
results of the execution

• Supports the connection manager on top of ER

• Can now replicate data using ER without a primary key

• Create ER replication as part of a create table DDL statement

• Make instance changes across all members of the Grid

– Add / Drop logical logs, chunks, dbspaces, update $ONCONFIG, etc.

• Turn on/off ER replication within the transaction and not just at the
start of the transaction

© 2013 IBM Corporation

Informix 12.1

34

Informix Flexible Grid – Requirements

• Informix Flexible Grid (Grid) builds upon an ER foundation

• Enterprise Replication must be initialized

• Create required db / smart spaces

• Set the $ONCONFIG parameters

• Create the $SQLHOSTS instance “group” definitions for Grid nodes like ER

nodes

• Specific syntax for Grid vs “regular” ER configuration and administration

• Grid requires all instances to be on Informix 11.7 or higher

• Grid is still heterogeneous from a H/W perspective though

© 2013 IBM Corporation

Informix 12.1

35

Informix Flexible Grid - Primary Keys

• No longer require a Primary Keys for tables replicated by
Enterprise Replication (ER)

• Use the WITH ERKEY keyword when defining tables or --erkey
when defining a replicate

– Creates shadow columns (ifx_erkey_1, ifx_erkey_2, and
ifx_erkey_3)

– Creates a new unique index and a unique constraint using
these columns that ER uses for a primary key

• For most database operations, the ERKEY columns are hidden

– Not visible to statement like SELECT * FROM tablename;

• Example

CREATE TABLE customer (id INT) WITH ERKEY;

ALTER TABLE customer ADD ERKEY;

© 2013 IBM Corporation

Informix 12.1

36

Informix Flexible Grid – Easy to set up and use

Spread your workload across different HW, operating systems, and versions of Informix

Unix Linux

Flexible Grid

Secondary

Macintosh

Secondary

Windows

• Install Informix on your server(s)

• Grid servers (like the ER servers) may have secondary servers

attached such as HDR, RSS, or SDS servers

• Define a grid to contain your servers

• Give your grid a name and associate a list of servers with it

• Use graphical interface or a command line tool for grid operations

• Configure whether you want to replicate just schema changes or

schema and data changes

The grid is ready

to use!

© 2013 IBM Corporation

Informix 12.1

37

Defining the Grid

• The GRID is defined by using the cdr utility

– Defines the nodes within the grid

cdr define grid <grid_name> --all

cdr define grid <grid_name> <node1 node2 …>

• Can create a grid based on an existing replication domain

– Use the --all to include all replication servers in the domain in

the grid

• Do not use when running in a mixed Informix version

environment

© 2013 IBM Corporation

Informix 12.1

38

Enabling the Grid

• Controls who can perform grid operations and from which server in the grid

cdr enable grid –grid=<grid_name> --user=<user>

--node=<node>

• At least one user and one server must be authorized

• User informix does not have permission to perform grid
operations unless explicitly authorized

• Authorizing more than one server from which to run grid
commands can lead to conflicts between grid commands

• The users must have Connect privilege for all databases on
which they run grid routines on all the servers in the grid

© 2013 IBM Corporation

Informix 12.1

39

Informix Grid - Initialization

• When a grid is enabled, the grid’s name is used to generate a replicate
set of the same name

• Any table that is created as a grid operation and is replicated becomes
part of that replicate set

Pan_1: cdr list replset

Ex T REPLSET PARTICIPANTS

N N ifx_internal_set _ifx_check_timestamp,

_ifx_grid_cm_er_serv,

_ifx_grid_cm_nodes,

_ifx_grid_cm_sla, _ifx_grid_cmd,

_ifx_grid_cmd_ddl_part,

_ifx_grid_def, _ifx_grid_node,

_ifx_grid_part, _ifx_grid_users,

_ifx_qod_clock_differences

N N mytest_grid

Pan_1:

The replicate names are numeric and don’t include the table name

© 2013 IBM Corporation

Informix 12.1

40

Disable Grid Operations

• Used to remove a node or user from being able to perform grid operations

cdr disable grid –grid=<grid_name> --node=<node_name>

cdr disable grid –grid=<gird_name> --user=<user_name>

cdr disable grid –g <grid_name> -n <node_name>

-u <user_name>

• Revokes the permission to run routines on the specified grid
from the specified user or server that were earlier granted

© 2013 IBM Corporation

Informix 12.1

41

Performing GRID DDL operations

• DDL operations will be performed on the target nodes within the
Grid

– Within the same database as on the source

– By the same user as was on the source

– Using the same locale as on the source

• DDL operations can be executed from any database, including
system databases for which a user ID has connect permissions

• Implies an end-user database is not required for Grid operations

• DDL operations create database/table/index/etc

– But master replicates are NOT created by default

© 2013 IBM Corporation

Informix 12.1

42

Performing GRID DDL operations

• To perform DDL operations at a grid level

– Must first connect to the Grid on an authorized server and as an
authorized user

– Execute the built-in procedure

ifx_grid_connect(<gridName>, <tag>, <er_enable>);

• The tag and er_enable flags are optional

• er_enable (0/1) enables or disables the creation of a replicate and replicate

set AND starting replication for any tables created while the connection to

the grid is open

• The tag can be used to make it easier to monitor the success/failure of grid

operations

© 2013 IBM Corporation

Informix 12.1

43

ifx_grid_connect(grid_name, tag, er_enable)

• Propagates DDL SQL statements and routines following the call to
all the servers in the grid

– Statement is simultaneously run on each server

• Does NOT propagate DML statements through the grid

– The ER replication system propagates the results of statements to the
other replication servers

• You must connect to a database before running this function

• Auto Registration of ER (er_enable = 1)

– All tables created through the grid will have a replicate created that
contains the newly created table with all the servers in the grid as
participants

– The replicate belongs to a replicate set that has the same name as
the grid

– The ERKEY shadow columns are added automatically

© 2013 IBM Corporation

Informix 12.1

44

Example of DDL propagation

execute procedure ifx_grid_connect(‘grid1’, ‘tag1’. 1);

create database tstdb with log;

create table tab1 (

col1 int primary key,

col2 int,

col3 char(20)) lock mode row;

create index idx1 on tab1 (col2);

create procedure loadtab1(maxnum int)

define tnum int;

for tnum = 1 to maxnum

insert into tab1 values

(tnum, tnum * tnum, ‘mydata’);

end for:

end procedure;

execute procedure ifx_grid_disconnect();

Will be executed
on all nodes

within the ‘grid1’
GRID

Replicate will be

created for table tab1

© 2013 IBM Corporation

Informix 12.1

45

Performing Other Grid Operations

• Three routines for easier execution of Grid operations

ifx_grid_execute()

• Provides execution of a SQL-based DDL or administrative command as a
Grid operation

ifx_grid_function() & ifx_grid_procedure()

• Provide the ability to execute a function or procedure as a Grid operation

• Do NOT have to explicitly connect to / disconnect from the Grid using these
operations

• Each operation can take three arguments

(‘gridname’, ‘command’, ‘tag’)

© 2013 IBM Corporation

Informix 12.1

46

Performing Grid Procedure Execution

• In addition to DDL propagation, can perform the execution of a procedure, function,
or statement as a grid operation.

execute procedure ifx_grid_procedure(

‘grid1’, ‘loadtab1(20000)’,’tag2’);

– This would cause the execution of loadtab1(20000) on all of the nodes within
the grid1 Grid

– The command would be ‘tagged’ with “tag2”

– By default, the results of the procedure would not be replicated by ER

© 2013 IBM Corporation

Informix 12.1

47

Performing Grid Function Execution

• The only difference between a function an a procedure is that a function will have a
return value

– The return is saved in the syscdr database and can be viewed from cdr list
grid

database sysadmin;
execute function ifx_grid_function(‘grid1’,
‘task(“create dbspace”,”dbsp3”,

“/db/chk/chk3”, ”8G”,”0”)’);

– The above would create a new 8GB dbspace called “dbsp3” on
all nodes within the grid

– By default the results of the function execution would not be
replicated by ER

© 2013 IBM Corporation

Informix 12.1

48

Performing Grid Statement Execution

• An individual statement can also be executed as a grid statement

execute procedure ifx_grid_execute(‘grid1’,

‘delete from tab1 where mod(col1,2) = 1’);

– The execution is replicated, not the results of the execution

– The table tab1 could be a raw table, or even contained within a non-logging

database

– By default, the results would not be replicated by ER

© 2013 IBM Corporation

Informix 12.1

49

Replicating Captured Transactions

• You can enable replication within a transaction that is run in the
context of the grid

– Changes the snoop status of ER from within a transaction

– By default, the results of transactions run in the context of the
grid are not also replicated by ER

• In certain situations you might want to both propagate a transaction
to the servers in the grid and replicate the results of the transaction

• Use the built-in procedure ifx_set_erstate() to change the
replication state from within a transaction

• Important: Must reset the replication state back to the default at the
end of the transaction or replication loops indefinitely

© 2013 IBM Corporation

Informix 12.1

50

Example of enabling ER for the execution of a Procedure

execute procedure ifx_grid_connect(‘grid1’);

create procedure myproc()

execute procedure ifx_set_erstate(‘on’);

execute procedure create_summary_report();

end procedure;

execute procedure ifx_grid_disconnect();

execute procedure ifx_grid_procedure(‘grid1’,’myproc()’);

• Retail chain wants to run a procedure to create a report that
populates a summary table of each store's current inventory

• The summary information then needs to be sent (replicated) to a
central server from each store

© 2013 IBM Corporation

Informix 12.1

51

Grid Operation Functions

ifx_grid_connect() Opens a connection and any command run is applied to
the Grid

ifx_grid_disconnect() Closes a connection with the Grid

ifx_grid_execute() Executes a single command across the Grid

ifx_grid_function() Executes a routine across the Grid

ifx_grid_procedure() Executes a procedure across the Grid

ifx_set_erstate() Controls replication of DML across the Grid for all tables
that participate in a replicate

ifx_get_erstate() Reports whether replication is enabled on a transaction
that is propagated across the Grid

Ifx_grid_purge() Purges metadata about operations that have been
executed on the Grid

ifx_grid_redo() re-executes a failed and tagged grid operation

• Operations can be run by any database in any node on the Grid

© 2013 IBM Corporation

Informix 12.1

52

Monitoring a Grid

• cdr list grid

– View information about server in the grid

– View the commands that were run on servers in the grid

– Without any options or a grid name, the output shows the list of
grids

• Servers in the grid on which users are authorized to run grid commands
are marked with an asterisk (*)

• When you add a server to the grid, any commands that were previously
run through the grid have a status of PENDING for that server

• Options include:
--source=<source_node>

--summary

--verbose

--nacks

--acks

--commands

cdr list grid grid1

© 2013 IBM Corporation

Informix 12.1

53

One Step Instantiation on new Nodes

• Previously, to clone the Primary

1. Create a level-0 backup

2. Transfer the backup to the new system

3. Restore the image

4. Initialize the instance

• ifxclone utility

• Clones an instance from a single command
• Starts the backup and restore processes simultaneously
• No need to read or write data to disk or tape

• Creates a standalone server, ER node or a remote standalone
secondary (RSS) server

• If creating a new ER node, ER registration is cloned as well

• No Sync/Check is necessary

ifxclone -T -S machine2 -I 111.222.333.555 -P 456 -t machine1

-i 111.222.333.444 -p 123

© 2013 IBM Corporation

Informix 12.1

54

Easily Convert Cluster Servers to ER nodes

• RSS � ER

– Use the rss2er() stored procedure is located in the syscdr

database

– Converts the RSS secondary server into an ER server

– Secondary will inherit the replication rules that the primary had

– Does not require a ‘cdr check’ or ‘cdr sync’

• HDR/RSS pair � ER pair (cdr start sec2er) (11.50)

– Converts an HDR/RSS pair into an ER pair

– Automatically creates ER replication between primary and
secondary server

– Splits HDR/RSS pair into independent standard servers that
use ER

© 2013 IBM Corporation

Informix 12.1

55

Upgrading a Cluster while it is Online

• Use ‘cdr start sec2er’ and ‘ifxclone’ to perform a rolling upgrade
of an HDR/RSS pair

• No planned down time required during a server migration!!!

• Basic Steps

1. Execute ‘cdr start sec2er’ to convert HDR/RSS pair to ER

2. Restrict application to only one of the nodes

3. Migrate server on which the apps are not running

4. Move apps to the migrated server

5. Use ifxclone to switch back to RSS/HDR

© 2013 IBM Corporation

Informix 12.1

56

Informix Flexible Grid - Benefits

• Supports a wide range of platforms

– Enables organizations to leverage inexpensive commodity hardware to
accomplish their scalability objectives

• Given its replication strategy, can seamlessly add and remove
servers in a Grid with little impact on the client applications

• Benefit of using Informix Flexible Grid with the Informix
Continuous Availability Feature

– Organizations enjoy similar benefits in addition to the incremental flexibility
of grid

© 2013 IBM Corporation

Informix 12.1

57

Informix Flexible Grid - Benefits

• Demonstrates exceptional reliability and autonomics

– Virtually eliminating maintenance activates on one or many
members

• Provides unique ability to simultaneously propagate
DDL and DML globally across a large group of
interconnected members

• Provides cloning capabilities to speed the creation of
member nodes

© 2013 IBM Corporation

Informix 12.1

58

Informix Flexible Grid - Easy to Setup and Manage in OAT

Easy to Manage

• Manage ANYTHING from ANYWHERE with a single ‘click’

• Set-up takes minutes not days or weeks

• Propagate changes to all servers on the Grid

Reliable

• Enterprise Replication (ER) must be setup and running

• Grid servers must be on 11.70 (Panther)

• OAT Replication plug-in must be installed

© 2013 IBM Corporation

Informix 12.1

59

OAT and the Grid

• The OpenAdmin Tool for Informix (OAT) contains

monitoring and administrative options for Grid installations

• Available under the new Replication menu option

© 2013 IBM Corporation

Informix 12.1

60

OAT and the Grid

Grid name and
administrative

nodes

• Overview page

All nodes in the Grid, their location, and
type source (aka administrative) or

member (aka regular)

© 2013 IBM Corporation

Informix 12.1

61

OAT and the Grid

• Review the results of tagged Grid operations

© 2013 IBM Corporation

Informix 12.1

62

OAT and the Grid

• View oncmsm agents for the Grid

© 2013 IBM Corporation

Informix 12.1

63

OAT and the Grid

• Depending on what you have selected, the two Actions buttons will present

different options including:

• Create or drop a Grid

• Add a node

• Add or remove an SLA

• Change node enablement

• More

© 2013 IBM Corporation

Informix 12.1

64

Grid Queries
• New GRID / GRID ALL clause to be used along with SELECT statements

• Table to be defined as “grid table” prior to using it in SELECT
statements.

• Query against all the nodes in a grid or a sub-set of nodes defined as
“regions”

• Regions can overlap

• Use ALL keyword to query all rows. (like union all)

• New built in functions ifx_node_id() and ifx_node_name() can be used
to identify data origin. Can be used to group results.

• Use GRID_NODE_SKIP environment statement to skip grid servers
that are unavailable.

© 2013 IBM Corporation

Informix 12.1

65

Grid Queries Examples
• Defining tables for grid queries

• Adding tables orders / items are grid tables

cdr change gridtable –grid=grid1 –database=stores –add items orders

• Defining Regions

cdr define region –grid=grid1 region1 gs_north gs_south

• Grid Query

set environment select_grid_all region1;
select fname, lname, ifx_node_id() as node, sum(tot_quantity) as tot_cnt

sum(tot_price) as tot_amt

from items i, orders 0, customer c
where i.order_num = o.order_num

and o.customer_num = c.customer_num

group by 2,1,3
order by 2,1,3

© 2013 IBM Corporation

Informix 12.1

66

Defer propagation of DDL statements

• Run DDL statements on the local server but defer propagation to other
nodes in the grid

• Use the ifx_grid_connect() procedure

execute procedure ifx_grid_connect(“grid1”, “tag1”, 4)

• Third parameter to ifx_grid_connect with a value of 4 or 5 facilitates
deferred propagation of DDL statements

• Use ifx_grid_release() procedure to start propagation of deferred DDL
statements

execute procedure ifx_grid_release(“grid1”, “tag1”);

© 2013 IBM Corporation

Informix 12.1

67

Copy external files from one grid server to another

• Copy non-database related, external data files from one grid server to
another

• Use the ifx_grid_copy() procedure

execute procedure ifx_grid_copy(“grid1”, “bin/new_cust_data.txt”)

Copies the file new_cust_data.txt from the current node to all the nodes of the

grid grid1.

� Path name is relative and is decided based on the ONCONFIG parameter

GRIDCOPY_DIR

� Copy files to different relative locations is possible

� Copy files and rename them to something different than the source file name

© 2013 IBM Corporation

Informix 12.1

68

Summary

• A Grid is a named set of interconnected replication servers

– Useful if you have multiple replication servers and you often need to

perform the same tasks on every replication server

• Guaranteed to save lots of effort in synchronizing servers in a multi
node ER environment

– Ability to execute one DDL statement automatically multiple
times

• Grid offers a lot of flexibility to programmers and DBA’s

– However, the flexibility of ER to replicate tables selectively forces

programmers and DBA’s to know beforehand where their data is

supposed to be and where is it going to go in larger multi node

environments

• Data consistency at the table level has implications for table design,
application logic, etc

© 2013 IBM Corporation

Informix 12.1

69

Informix Flexible Grid – Data Consistency

• Informix Grid changes the concept of data consistency and accessibility within an
Informix cluster

– With Informix HA replication clusters, data consistency and
accessibility has been consistent and at a cluster level

– With ER clusters, Global data consistency is across all nodes
for replicated data

• Through Conflict Resolution

• Individual rows can be easily found

– With Informix Flexible Grid, data consistency and accessibility is only at a node
level

• Enforced at a local table level

• Depends on how tables are created and how DML statements are
executed

© 2013 IBM Corporation

Informix 12.1

7070

Informix 12.1: Simply Powerful

71

© 2013 IBM Corporation

Informix 12.1

72

