Data Warehouse Performance

DB2 Version 8: More Opportunities!

David Beulke is an internationally recognized DB2 consultant,
author and lecturer. He is known for his extensive expertise in
database performance, data warehouses and internet
applications. He is currently President of the International DB2
Users Group (IDUG), a member of IBM DB2 Gold Consultant
program, a columnist for DB2 Magazine, co-author of the IBM
V7 and V8 z/OS DB2 Administration Certification exam, co-
author of the Business Intelligence Certification exam, former
instructor for The Data Warehouse Institute (TDWI), and former
editor of the IDUG Solutions Journal. He has helped clients be
successful on the mainframe, Linux, UNIX and Windows
platforms and has vast performance tuning experience in the
systems, applications and programming areas.

Dave can be reached at 703 798-3283 or through email at
DBeulke@compuserve.com

DB2 V8 Performance Opportunities

There are many other new Version 8 enhancements that make the
upcoming IDUG conference in May an educational priority for
preparing for Version 8. Getting information from real users in IBM
Quality Partnership Program (QPP) and IBM developers will help
your company leverage this state-of-the-art technology. IDUG has
published Version 8 white papers on the z/OS and Linux, UNIX and
Windows platforms that exhaustively describe many other Version 8
enhancements. These white papers can be found at the links below.

Z/0S http:/lwww.idug.org/idug/member/journal/may03/article02.cfm
LUW
http://www.idug.org/idug/member/journal/aug02/unveiling8.0.cfm

DB2 UDB Server Version 8 for z/OS is a tremendous release and IBM
continues to extend its reputation as the state-of-the-art leader in
DBMS technology.

Main Areas B
Why is it

important?

There are many data warehouse performance aspects, and knowing all
the different performance aspects, issues and considerations for
building your data warehouse can be a tremendous task. DB2 offers
many performance aspects missing from other RDBMS that can make
a huge performance difference. This presentation will highlight the
performance advantages of DB2 and how to handle all the design
issues, alternatives and considerations experienced while building a
large high performance data warehouse.

Learn how to build your data warehouse for maximum SQL access
performance while maintaining the key values for partitioning and
parallelism considerations. Also evaluating OLAP tool performance
aspects, the connectivity issues to the Internet and discussing the
considerations for large numbers of concurrent users are some of the
other design points that will be discussed. Through this presentation
you will learn many design options and alternatives to maximum
performance for your data warehouse design.

LUW SQL Eeatures

RANK Example: DENSE RANK Example:

SELECT WORKDEPT, SELECT WORKDEPT, EMPNO,

AVG(SALARY+BONUS) LASTNAME, FIRSTNME,
AS AVG_TOTAL_SALARY, EDLEVEL

RANK() OVER (ORDER BY DENSE_RANK()

AVG(SALARY+BONUS) OVER (PARTITION BY
DESC) WORKDEPT

AS RANK_AVG_SAL ORDER BY EDLEVEL DESC)
FROM EMPLOYEE AS RANK_EDLEVEL
GROUP BY WORKDEPT FROM EMPLOYEE

ORDER BY RANK_AVG_SAL ORDER BY WORKDEPT,
LASTNAME

ROW NUMBER Example:

SELECT ROW_NUMBER()

OVER (ORDER BY WORKDEPT, LASTNAME)
AS NUMBER,

LASTNAME,

SALARY

FROM EMPLOYEE

ORDER BY WORKDEPT, LASTNAME

SOL - OLAP Features

The SQL OLAP functions performed inside DB2 provide the answers much more efficiently then
manipulating the data in a program. Like join activities and other data manipulation that DB2 can do
directly the SQL OLAP functions can greatly reduce overall I/O and CPU utilization.

The functions are particularly good for getting the top number of data rows that match a criteria.

The OLAP RANK Function can be used to order and prioritize your data according to your specific
criteria. RANK orders your data assigning successive sequential numbers to the rows returned from
the SQL query. The ranked rows can be individual data rows or groups of data rows.

The OLAP DENSE_RANK Function can also be used to order and prioritize your data according to
your specific criteria.

DENSE_RANK orders your data and assigns successive sequential numbers based on the OVER
PARTITION data values found. DENSE_RANK differs from RANK because common values or ties are
assigned the same number.

The OLAP ROW NUMBER function can be used to assign row numbers to the retrieved data. In
addition ROW NUMBER can be used to order your data assigning successive sequential numbers for
evaluation for application decisions or en-user screen processing.

Success, ROI, and performance are all determined by the end-user getting their questions answered.
The common preliminary questions for a sales based DW that must be answered are:

»How much product did we sell last (year, month or time period)?
»How do these sales figures compare to last (year, month or AP)?
»How much profit did we make on sales during this period?
»Who did we sell our products to?

»What categories or classifications separate our customers ?
»What products were sold to which customers classifications?
»What was the response rate on the marketing promotion?
»What percentage of our customer are new?

How many I/Os does it take with your DW design to get these common questions answered?

Z/0S SQL Features

Next the new Version 8 features of Common Table Expressions
(CTEs) and recursive SQL can be combined to provide a powerful
data warehousing design solution for extracting and working on a
distinct set of information. CTEs provide a new way to extract a result
set from the database based on desired criteria. Next this unique
result set can be referenced in additional SQL, further refining the
answer for the end-user. CTEs avoid the catalog overhead of views,
provide the ability to use host variables and avoid data changes from
other INSERT, UPDATE or DELETE SQL operations. With recursive
SQL, SQL that references itself, distinct result sets can have the
power of SQL repeatedly applied to quickly and efficiently derive the
answers. Combining these techniques provides a great way to give
the data warehouse end-users answers to their unique criteria while
avoiding conflicts with other users, maintaining data security and
easily repeating the power of SQL criteria.

MQOT — 10 to 1000 times improvement!

Fact-Yearl
MQT

Fact10N Fact-Month Fact-Daily
MQT MQT MQT

"N W
]

MOT as aggregates

Data aggregation and summaries can save a
tremendous amount of I/Os and CPU. Make sure the
aggregates and summaries are monitored to
demonstrate and justify their creation.

Materialized Query Tables

VI@NFGIF\IeW,

|
TET © ¢

Fact-Month
MQT

Fact-Daily
MQT

Fact-Yearly
MQT

Materialized Views

Another method of speeding analysis is through the use of
Materialized Query Tables (MQTs) as aggregate data stores that
specialize in a limited dimensional function. These MQTs are good for
taking complicated join predicates and stabilizing the access path for
end-users. Warehouse history can also be summarized into MQTs to
provide standard comparisons for standard accounting periods or
management reports.

Comparison Points

MQTs function best when defined to existing end-user comparison
points. These aggregates can be used extensively for functions and
formulas because of their totaled data

Intelligent Queries

Meta-data about aggregates must be well documented and published
to all end-users and their tools. Tools should be aggregate aware and
be able to include the different appropriate aggregate if needed.

Materialized Query Tables

| i

T. 9T T

Fact-Dept
MQT

Fact-Store
MQT

Fact-Sales
MQT

Fact-Product
MQT

MQOTs and Horizontal Aggreqgation

Tracking query activity can sometimes point to special
data requirements or queries that happen on a frequent
basis. These queries may be totaling particular products
or regions that could be optimized through a Materialized
Query Table (MQT or horizontal aggregate).

Eliminate I/Os for answers

Analysis must be done to justify the definition of an MQT
to make sure it is used enough. Like all aggregates, MQTs
and DGTTs if used enough can eliminate 1/0Os and
conserve CPU resources. MQTs aggregates work from a
particular dimension key that is can be easily separated
from the rest of the data.

Declared Global Tremporary Tables

1 1 25 4958 835
27 1234 876,

19 | 3321 765

21 [1134 730

23 | 5103 [715
3 31 4908 934
3 3

28 3456 954
33 1443 987

32 2012 967
29 2849 931
24 1986 623

DGTT with tool processing and security aspects

Care needs to be taken to include the GTTs information in
all end-user tool information so it can be evaluated for
query result sets. Sometimes global temporary tables can
also be used to provide security against departments
looking at other department’s data. The GTTs or
horizontal aggregate security technique is very effective

and also maximizes query performance.

MDC- Multidimensional Clustering

Another new feature with DB2 is the new patented clustering
technique MDC - Multi-Dimensional Clustering. This feature does
exactly as the name implies, it clusters the data against multiple
dimensional keys. The MDC clustering is achieved by managing
data row placement into page extent blocks based on their
dimensional key values. The management, placement and access
are facilitated through a new Version 8 Block Index object type. This
new Block Index object type is created for each of the dimensions, is
similar in structure to a normal index but cross references rows to a
dimensional data block instead of an individual row.

The extent data page block sizes are chosen at Multi-Dimensional
Clustering definition time and if additional space is needed
consecutive block extents are defined. Since the rows are managed
to a data block, the cross-referencing Block index information
needed is smaller, resulting in a smaller index structure. With
consecutive pages and the Block index only referencing data
blocks, Block index reorganization will not be needed as often as a
regular indexes referencing individual rows.

MDC- Multi Keys within new blocks

MDC Considerations

Taking data placement management one-step further than
partitioning, Multi-Dimensional Clustering groups the
rows to the various dimensional key blocks ideally
organizing the rows for data warehousing and OLAP
application access. The Multi-Dimensional Clustering
Block indexes can be used individually, combined with
regular indexes and utilized in all the intra and inter
parallelism optimizer access methods to quickly retrieve
large amounts of data. Since the Multi-Dimensional
Clustering blocks are defined and extended in
consecutive page blocks, similar data is contained in
consecutive pages making caching, pre-fetching, RID lists
and accessing data that much quicker.

Clustering along multi dimensional keys also has
tremendous value for regular insert, update activities
also. With a regular table, the data is placed via a single
clustering value and becomes un-clustered with more
insert and update activity. Multi-Dimensional Clustering
tables maintain their clustering continuously over time
because the clustering is based on multiple clustering
keys that point to data blocks instead of individual rows.

New Indexes Opportunities

Clustering for Performance

Eliminating and minimizing 1/0Os can make or break
performance objectives. A prototype design should be put
together and typical queries estimated. SQL Traces on the
system during the user testing can help point out system
issues. Clustering should be modeled against the most
popular usage of the table and to eliminate as many sorts
as possible.

Data-Partitioned Secondary Index (DPsl)

NPI

/\
xR R X R R R R R R AN

DPSI indexes were implemented to eliminate the huge
overhead and downtime associated with the utility BUILD2
phase or building a NPl index. The DPSI index structure is
partition dependent potentially allowing the parts of the
index to be built while its partition utility processing is
being done.

DPSI index must be defined as non-unique. This causes
the DPSI index to be potentially a poor performing index
choice for DB2 because multiple DPSI partitions may need
to be searched.

DPSI Considerations

Determine whether your DPSI design causes your SQL
queries to search multiple partitions of the DPSI index to
produce the result set.

Examples of potential DPSI performance opportunities.

Index Enhancements

DB2 Version 8 can now use an index when it is comparing
variables of different data types and lengths. This ability
allows more indexes to be used during join operations
and when comparing host variables to db2 columns.

VARCHAR columns that are used in indexes now have
the option of being not padded to their largest length. By
reducing the index entry size, more index entries can be
fit per DB2 page. This will reduce the number of index
pages and potentially the number of levels within an
index structure.

Index Enhancements

STAR Join Enhancements

The sparse index capability reduces 1/0O associated with
unqualified rows that might have been considered and
then eliminated through a sort of a large result set. The
new sparse index capability builds an index of only
qualified rows. This eliminates the unqualified data early
in the access path greatly improving query response time
and CPU performance. Improvements in DB2 optimizer
algorithms also determine the cost effectiveness of when
the snowflake or raw data warehouse dimensions should
be materialized. The improved algorithms help DB2
analyze the SQL and determine whether and when the
access path would benefit from materializing the
snowflake dimensions. All of these improvements can
have a dramatic performance impact on your ever-
increasing complex data warehousing front-end OLAP
tool queries.

Also new in Version 8 is the ability to create a dedicated
virtual pool for star join workfiles usually created for
materialized dimensions or composite data. By dedicating
a data warehousing workfile virtual pool, repeated
scanning or access to this work data is done in memory.
Since this star join workfile pool is in addition to any other
buffer pools, sort operations and query performance is
improved.

Altering DBMS reality

D Ne S
SR L
DPSI[41y (4[4 4 4[4 [+[4 4[4[+ 431344

Partitioning parallelism reduces time

Version 8 also provides a powerful data warehouse design alternatives
with the expansion and rotation capabilities of DB2 z/OS table
partitioning. In Version 8 the maximum number of partitions has been
expanded from 254 to 4096. Having the capability to define a separate
table partition for every day for over ten years is capability unique of
all DBMSs to DB2 z/OS and remarkable design flexibility for data
warehouses. Also having the ability to rotate partitions for
implemented partitioned table designs provides the ability to enhance
existing partitioned databases.

In Version 8 star join related features have been improved in several
new ways. The most important features are the new sparse indexing
capability, enhancements to the DB2 optimizer materialization and a
dedicated virtual memory pool. These features along with new
additional ZPARMs and the RUNSTATS statistical distribution and
sampling capabilities directly help the DB2 optimizer choose the most
efficient star join data warehouse table access path.

How many partitions?

Determine how many partitions and parallel processing
streams your CPU, I/O and network can support.

Do vour calculations

Make sure you include all the various SQL validation and
dimensional key translation work.

Parallelism — All Aspects

SQL

Join
Dimension
Fact

MQT
Aggregate(s)

Result
Set

Extract, Transformation, Load and Maintenance

Parallelism designs for reducing the time windows for ETL, maintenance and
end-user access processing should be weighed against each other to come
up with the best overall design.

Partition Keys

When analyzing different partitioning key candidates, study the keys that are
available to the various processes that maintain the warehouse. Try to find a
key that is common among all the processes for the partitioning and data
distribution scheme. The various processes can then be split via the
partitioning key and run in parallel drastically cutting the overall processing
time.

MOT - Aggregates Keys

Also verify that the same partitioning keys and scheme are available to the
aggregate tables. This is critical to joining the tables effectively and
efficiently.

Evenly distribute the data

The separation rules are very important because of the potential to evenly
distribute the data. Distributing the data allows multiple entry points into the
data based on the rules or keys that separate the data.

Summary.

Questions?
Comments!

DBeulke@CompusServe.com
703 798-3283

Remember IDUG!!
May 9-13, 2004
Orlando World Center Marriott

References

IDUG Papers DB2 UDB Version 8 (for z/OS & LUW)

DB2 UDB for z/OS Programming Functional Specification
DB2 UDB for z/OS V8.1 Administration Guide

DB2 UDB for AIX V8.1 Administration Guide

DB2 UDB for z/OS V8.1 SQL Reference

Approaches and Methodologies for Capacity Planning for Business Intelligence Applications SG24-
5689

DB2 UDB for z/OS V7 Administration Guide
DB2 UDB for Unix, Linux and Windows V8 Administration Guide
Meet the Experts —-DB2 OLAP Functions by Bob Lyle IDUG EU 2001

